![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b6835255b79fe24daf2ee_Chevron%20up.png)
Back
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b2808fce759ab2f675bb9_zsxkib.png.png)
Custom Object Detection
This is a custom single object detection model used to detect a specific object in a given image.
Object Detection
Objection detection is one of the key use cases for CV. The job requires to detect the objects and coordinates in a given image. In this image, we. are showing the examples for single object detection. The same can be expanded to multiple objects.
Input
Prompt* String
how many s in mississippi. think step by step
Input text for the model
temperature
*
number
(minimum: 0, maximum: 1)
0.7
Controls randomness. Lower values make the model more deterministic, higher values make it more random.
Default: 0.7
Default: 0.7
top_p
*
number
(minimum: 0, maximum: 1)
0.95
Controls randomness. Lower values make the model more deterministic, higher values make it more random.
Default: 0.7
Default: 0.7
max_tokens
*
integer
(maximum: 1)
512
Maximum number of tokens to generate
Default: 0.7
Default: 0.7
Input:
![](https://cdn.prod.website-files.com/62f13d045514942a5974709d/674d9c42c52d63d54c8b80bd_674d9a9bedace8e062c43c92_od%2520input.png)
Output
Model output for Object Detection (Example 1)
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b76b332b4b304e075ca0e_Group%2046664.png)
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b770cb4808507598d5cf4_Group%2046665.png)
![](https://cdn.prod.website-files.com/62f13d045514942a5974709d/674d9db05bf4470d4b6411ee_674d9a9d09706f86a6c6bce8_od%2520output.png)
DL Backtrace for example 1
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b76b332b4b304e075ca0e_Group%2046664.png)
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b770cb4808507598d5cf4_Group%2046665.png)
![](https://cdn.prod.website-files.com/62f13d045514942a5974709d/674d9dc8c868885111fd84a0_674d9aa0451599443904ac78_od%2520backtrace.png)
GradCAM for example 1
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b76b332b4b304e075ca0e_Group%2046664.png)
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/671b770cb4808507598d5cf4_Group%2046665.png)
![](https://cdn.prod.website-files.com/62f13d045514942a5974709d/674d9de36992d4b5e68712e5_674d9ddf9eb0a4312a56a7b2_od%2520gradcam.png)
Model Description:
Model Architecture for SingleObject Detection:
- Input:Accepts an image of shape (224, 224, 3).
- Convolutional Blocks:
- 5 sequential blocks of Conv2D layers withReLUactivation and MaxPooling2D for feature extraction.
- Filters progress as 32 → 64 → 128 → 256 → 512.
- Global Pooling:
- GlobalAveragePooling2D reduces spatialdimensions to a single vector.
- Dense Layers:
- Two fully connected layers with 512 and256 units for feature refinement.
- Output Layer:
- Dense(4, activation='sigmoid') outputs 4normalized values representing bounding box coordinates: [x_min,y_min,x_max,y_max].
![](https://cdn.prod.website-files.com/62bec306e1bec5322b5fe292/66fa4c3279968b11ee824a2a_Sphare.png)
Is Explainability critical for your 'AI' solutions?
Schedule a demo with our team to understand how AryaXAI can make your mission-critical 'AI' acceptable and aligned with all your stakeholders.